Determination of Gradient and Curvature Constrained Optimal Paths
نویسنده
چکیده
This article provides an analysis of gradient and curvature constraints on path form and length, with particular reference to road, rail and pipeline route selection. Initially we examine the case of a single (global) gradient constraint and a planar surface, with or without boundaries and obstacles. This leads on to a consideration of surface representation using rectangular lattices and procedures for determining shortest gradient-constrained paths across such surfaces. Gradient-Constrained Distance Transforms (GCDTs) are introduced as a new procedure to enable such optimal paths to be computed, and examples are provided for a range of landform profiles and gradients. Horizontal and vertical curvature constraints are then analysed and incorporated into final solution paths as subsequent stages of the optimisation process. Such paths may then be used as pre-analysed input to detailed cost and engineering models in order to speed up, and where possible improve, the quality and cost-effectiveness of route selection.
منابع مشابه
OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملBounded-Curvature Shortest Paths through a Sequence of Points
We consider the problem of computing shortest paths, whose curvature is constrained to beat most one almost everywhere, and that visit a sequence of n points in the plane in a givenorder. This problem arises naturally in path planning for point car-like robots in the presenceof polygonal obstacles, and is also a sub-problem of the Dubins Traveling Salesman Problem.We show that, ...
متن کاملOn the hybrid conjugate gradient method for solving fuzzy optimization problem
In this paper we consider a constrained optimization problem where the objectives are fuzzy functions (fuzzy-valued functions). Fuzzy constrained Optimization (FO) problem plays an important role in many fields, including mathematics, engineering, statistics and so on. In the other side, in the real situations, it is important to know how may obtain its numerical solution of a given interesting...
متن کاملA box-constrained optimization algorithm with negative curvature directions and spectral projected gradients
A practical algorithm for box-constrained optimization is introduced. The algorithm combines an active-set strategy with spectral projected gradient iterations. In the interior of each face a strategy that deals efficiently with negative curvature is employed. Global convergence results are given. Numerical results are presented.
متن کاملOutperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process
This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp.-Aided Civil and Infrastruct. Engineering
دوره 21 شماره
صفحات -
تاریخ انتشار 2006